Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Euro Surveill ; 28(16)2023 04.
Article in English | MEDLINE | ID: covidwho-2302104

ABSTRACT

BackgroundThere are conflicting reports on the performance of rapid antigen detection tests (RDT) in the detection of the SARS-CoV-2 Omicron (B.1.1.529) variant; however, these tests continue to be used frequently to detect potentially contagious individuals with high viral loads.AimThe aim of this study was to investigate comparative detection of the Delta (B.1.617.2) and Omicron variants by using a selection of 20 RDT and a limited panel of pooled combined oro- and nasopharyngeal clinical Delta and Omicron specimens.MethodsWe tested 20 CE-marked RDT for their performance to detect SARS-CoV-2 Delta and Omicron by using a panel of pooled clinical specimens collected in January 2022 in Berlin, Germany.ResultsWe observed equivalent detection performance for Delta and Omicron for most RDT, and sensitivity was widely in line with our previous pre-Delta/Omicron evaluation. Some variation for individual RDT was observed either for Delta vs Omicron detection, or when compared with the previous evaluation, which may be explained both by different panel sizes resulting in different data robustness and potential limitation of batch-to-batch consistency. Additional experiments with three RDT using non-pooled routine clinical samples confirmed comparable performance to detect Delta vs Omicron. Overall, RDT that were previously positively evaluated retained good performance also for Delta and Omicron variants.ConclusionOur findings suggest that currently available RDT are sufficient for the detection of SARS-CoV-2 Delta and Omicron variants.


Subject(s)
COVID-19 Serological Testing , COVID-19 , SARS-CoV-2 , Humans , Berlin , COVID-19/diagnosis , Germany , SARS-CoV-2/genetics , COVID-19 Serological Testing/methods
2.
Commun Biol ; 5(1): 1138, 2022 Oct 27.
Article in English | MEDLINE | ID: covidwho-2087323

ABSTRACT

SARS-CoV-2 and its emerging variants of concern remain a major threat for global health. Here we introduce an infection model based upon polarized human Alveolar Epithelial Lentivirus immortalized (hAELVi) cells grown at the air-liquid interface to estimate replication and epidemic potential of respiratory viruses in the human lower respiratory tract. hAELVI cultures are highly permissive for different human coronaviruses and seasonal influenza A virus and upregulate various mediators following virus infection. Our analysis revealed a significantly reduced capacity of SARS-CoV-2 Omicron BA.1 and BA.2 variants to propagate in this human model compared to earlier D614G and Delta variants, which extends early risk assessments from epidemiological and animal studies suggesting a reduced pathogenicity of Omicron.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , SARS-CoV-2/genetics , Lung , Epithelial Cells
3.
J Proteome Res ; 21(2): 459-469, 2022 02 04.
Article in English | MEDLINE | ID: covidwho-1605127

ABSTRACT

Severe acute respiratory syndrome (SARS)-CoV and SARS-CoV-2 infections are characterized by remarkable differences, including infectivity and case fatality rate. The underlying mechanisms are not well understood, illustrating major knowledge gaps of coronavirus biology. In this study, protein expression of the SARS-CoV- and SARS-CoV-2-infected human lung epithelial cell line Calu-3 was analyzed using data-independent acquisition-mass spectrometry. This resulted in a comprehensive map of infection-related proteome-wide expression changes in human cells covering the quantification of 7478 proteins across four time points. Most notably, the activation of interferon type-I response was observed, which is surprisingly absent in several proteome studies. The data reveal that SARS-CoV-2 triggers interferon-stimulated gene expression much stronger than SARS-CoV, which reflects the already described differences in interferon sensitivity. Potentially, this may be caused by the enhanced abundance of the viral M protein of SARS-CoV in comparison to SARS-CoV-2, which is a known inhibitor of type I interferon expression. This study expands the knowledge on the host response to SARS-CoV-2 infections on a global scale using an infection model, which seems to be well suited to analyze the innate immunity.


Subject(s)
COVID-19 , Interferon Type I , Epithelial Cells , Gene Expression , Humans , Immunity, Innate , Lung , Proteomics , SARS-CoV-2
4.
Euro Surveill ; 26(44)2021 11.
Article in English | MEDLINE | ID: covidwho-1504591

ABSTRACT

IntroductionThe detection of SARS-CoV-2 with rapid diagnostic tests (RDT) has become an important tool to identify infected people and break infection chains. These RDT are usually based on antigen detection in a lateral flow approach.AimWe aimed to establish a comprehensive specimen panel for the decentralised technical evaluation of SARS-CoV-2 antigen rapid diagnostic tests.MethodsWhile for PCR diagnostics the validation of a PCR assay is well established, there is no common validation strategy for antigen tests, including RDT. In this proof-of-principle study we present the establishment of a panel of 50 pooled clinical specimens that cover a SARS-CoV-2 concentration range from 1.1 × 109 to 420 genome copies per mL of specimen. The panel was used to evaluate 31 RDT in up to six laboratories.ResultsOur results show that there is considerable variation in the detection limits and the clinical sensitivity of different RDT. We show that the best RDT can be applied to reliably identify infectious individuals who present with SARS-CoV-2 loads down to 106 genome copies per mL of specimen. For the identification of infected individuals with SARS-CoV-2 loads corresponding to less than 106 genome copies per mL, only three RDT showed a clinical sensitivity of more than 60%.ConclusionsSensitive RDT can be applied to identify infectious individuals with high viral loads but not to identify all infected individuals.


Subject(s)
COVID-19 , SARS-CoV-2 , Antigens, Viral , Diagnostic Tests, Routine , Humans , Sensitivity and Specificity , Serologic Tests
5.
Virol J ; 18(1): 110, 2021 06 02.
Article in English | MEDLINE | ID: covidwho-1255943

ABSTRACT

BACKGROUND: The reliable detection of SARS-CoV-2 has become one of the most important contributions to COVID-19 crisis management. With the publication of the first sequences of SARS-CoV-2, several diagnostic PCR assays have been developed and published. In addition to in-house assays the market was flooded with numerous commercially available ready-to-use PCR kits, with both approaches showing alarming shortages in reagent supply. AIM: Here we present a resource-efficient in-house protocol for the PCR detection of SARS-CoV-2 RNA in patient specimens (RKI/ZBS1 SARS-CoV-2 protocol). METHODS: Two duplex one-step real-time RT-PCR assays are run simultaneously and provide information on two different SARS-CoV-2 genomic regions. Each one is duplexed with a control that either indicates potential PCR inhibition or proves the successful extraction of nucleic acid from the clinical specimen. RESULTS: Limit of RNA detection for both SARS-CoV-2 assays is below 10 genomes per reaction. The protocol enables testing specimens in duplicate across the two different SARS-CoV-2 PCR assays, saving reagents by increasing testing capacity. The protocol can be run on various PCR cyclers with several PCR master mix kits. CONCLUSION: The presented RKI/ZBS1 SARS-CoV-2 protocol represents a cost-effective alternative in times of shortages when commercially available ready-to-use kits may not be available or affordable.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , RNA, Viral/analysis , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , Coronavirus Envelope Proteins/genetics , High-Throughput Nucleotide Sequencing/methods , Humans , Limit of Detection , Polyproteins/genetics , RNA, Viral/genetics , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Viral Proteins/genetics
6.
Patterns (N Y) ; 2(6): 100262, 2021 Jun 11.
Article in English | MEDLINE | ID: covidwho-1237843

ABSTRACT

Non-pharmaceutical interventions (NPIs) remain decisive tools to contain SARS-CoV-2. Strategies that combine NPIs with testing may improve efficacy and shorten quarantine durations. We developed a stochastic within-host model of SARS-CoV-2 that captures temporal changes in test sensitivities, incubation periods, and infectious periods. We used the model to simulate relative transmission risk for (1) isolation of symptomatic individuals, (2) contact person management, and (3) quarantine of incoming travelers. We estimated that testing travelers at entry reduces transmission risks to 21.3% ([20.7, 23.9], by PCR) and 27.9% ([27.1, 31.1], by rapid diagnostic test [RDT]), compared with unrestricted entry. We calculated that 4 (PCR) or 5 (RDT) days of pre-test quarantine are non-inferior to 10 days of quarantine for incoming travelers and that 8 (PCR) or 10 (RDT) days of pre-test quarantine are non-inferior to 14 days of post-exposure quarantine. De-isolation of infected individuals 13 days after symptom onset may reduce the transmission risk to <0.2% (<0.01, 6.0).

7.
Mol Cell Probes ; 58: 101742, 2021 08.
Article in English | MEDLINE | ID: covidwho-1220955

ABSTRACT

Point of care detection of SARS-CoV-2 is one pillar in a containment strategy and important to break infection chains. Here we report the sensitive, specific and robust detection of SARS-CoV-2 and respective variants of concern by the ID NOW COVID-19 device.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Molecular Diagnostic Techniques/methods , Point-of-Care Systems , SARS-CoV-2/genetics , COVID-19/virology , Clinical Laboratory Techniques/methods , Humans , Reproducibility of Results , SARS-CoV-2/physiology , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL